Multiple Band-Pass Filtering Method for Improvement on Prediction Accuracy of Linear Multivariate Analysis
نویسنده
چکیده
An approach coupling signal processing and partial least-squares regression analysis (PLS) is described in which raw spectral data are processed with a multiple band-pass lter and the ltered spectra are used in a PLS to build a calibration model for the analyte of interest. The multiple band-pass lter is speci cally designed for a desired analyte based on the Fourier frequency characteristics of the pure spectrum of the desired analyte and the spectra of the interference background. It maximizes the ratio of signal to background. This combined multiple band-pass ltering and PLS method (MFPLS) was evaluated by determining clinically relevant levels of glucose, urea, ethanol, and acetaminophen in simulated human sera, in which triglyceride was simulated with triacetin; bovine serum albumin and globulin were used to model protein molecules in the serum. The results demonstrate that MFPLS produces better accuracy of prediction than PLS in all instances.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملModeling of temperature in friction stir welding of duplex stainless steel using multivariate lagrangian methods, linear extrapolation and multiple linear regression
In this study, the temperature in friction stir welding of duplex stainless steel has been investigated. At first, temperature estimation was modeled and estimated at different distances from the center of the stir zone by the multivariate Lagrangian function. Then, the linear extrapolation method and multiple linear regression method were used to estimate the temperature outside the range and ...
متن کاملModeling of temperature in friction stir welding of duplex stainless steel using multivariate lagrangian methods, linear extrapolation and multiple linear regression
In this study, the temperature in friction stir welding of duplex stainless steel has been investigated. At first, temperature estimation was modeled and estimated at different distances from the center of the stir zone by the multivariate Lagrangian function. Then, the linear extrapolation method and multiple linear regression method were used to estimate the temperature outside the range and ...
متن کاملAccuracy of obesity indices alone or in combination for prediction of diabetes: A novel risk score by linear combination of general and abdominal measures of obesity
Background: The predictive power of obesity measures varies according to the presence of coexistent measures. The present study aimed to determine the predictive power of combinations of obesity measures for diabetes by calculation of a linear risk score. Methods: Data from a population-based cross-sectional study of 994 representative samples of Iranian adults in Babol, Iran were analyzed. Me...
متن کاملTime varying EEG Bandpower Estimation Improves 3D Hand Motion Trajectory Prediction Accuracy
Introduction: Motion trajectory prediction (MTP) employs a time-series of band-pass filtered EEG potentials for reconstructing the three dimensional (3D) trajectory of limb movements with a multiple linear regression (mLR) block. While traditional multiclass classification methods use power values of mu (8-12Hz) and beta (12-30Hz) bands for limb movement based classification, recent MTP brain-c...
متن کامل